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Abstract. Mathematics is a field that breathes formality. The very foun-

dations of mathematics are the formal axioms that allow us to confirm, with

confidence, the validity of our proofs. But the formality of mathematics has
surprising limitations, and in this paper we look at how mathematics is for-

malized and then explore another dimension of its limitations—namely, the

apparent fact that there are real numbers that we cannot express.
Section 2 looks at the foundations of mathematics and builds up the basic

knowledge that will be required for Section 3, where the above claim is proven

and its implications are explored.
The authors have deliberately made this paper accessible—albeit with some

effort on the reader’s part—to anyone with an understanding of high school
mathematics. The content of Section 2 will no doubt be familiar to experienced

readers, although such readers may still find the presentation of the material

to be enlightening and entertaining.

1. Three Questions

Does a set that contains all sets that do not contain themselves contain itself?
Bertrand Russell’s proposition of this famous paradox in Cantor’s näıve set theory
threw mathematics into a frenzy, and Zermelo’s subsequent developments in set
theory were one of the first steps into formalizing mathematics.

Nowadays, foundational mathematicians have formally crafted axiomatic sys-
tems that are both expressive enough to render valid all the results of modern-day
mathematics, yet restrictive enough that no similar foundation-breaking paradoxes
have been found to date. It is certainly true that some topics in mathematics, such
as the Axiom of Choice or the potential of type theory to replace set theory, are
deeply controversial—but they do not carry any implications about the consistency
of mathematics. Whether numbers are types, sets, or something completely differ-
ent affects not what can be done with them but rather the perspectives from which
we regard them.

More fundamental to mathematics than the notion of a “number,” as is so often
the misconception, are the answers to three questions:

1.1. Question. What is a valid mathematical object?

1.2. Question. What is a valid mathematical statement?

1.3. Question. What is a valid mathematical proof?

The next section is devoted to providing satisfactory answers.

2. Foundations of Mathematics

2.1. Definition (Sets). A set is a collection of objects. A set may be empty, in
which case is it called the empty set, which is commonly denoted ∅ or {}, or it may
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contain other sets. If a set x contains the set y and z, we may write x or {y, z} to
denote the set x. Two sets x and y are equal if and only if every member of x is
a member of y and vice versa. For instance, {x, x} = {x}. Objects contained in a
set are called elements of the set.

2.2. Remark. Note that the empty set and the set containing the empty set are not
equal, a fact that often confuses students. Sets can be thought of as “boxes.” With
this image in mind, the distinction is clear: an empty box and a box containing
an empty box are certainly different. Note, however, that this visualization has its
flaws: a box containing three identical red balls must be considered the same as a
box containing one copy of the same ball.

Zermelo-Fraenkel Set Theory (or indeed, Russell’s type theory, though that is
beyond the scope of this article) answers Question 1.1: every mathematical object
is a set. This definition is sensible considering how much of math revolves around
thinking about sets: the set of natural numbers N, the set of even integers 2Z =
{2x : x ∈ Z}, the set of real numbers in the closed interval between 0 and 1
[0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. But there are other ways that it does not seem so
sensible. How can a number be a set? How can an ordered pair be a set? How
can functions, which are themselves often handled as objects in their own right in
rigorous calculus and algebra, be sets?

2.3. Example (Common Set-Theoretic Definitions). The following definitions are
not central to this article; rather, they are examples to help the reader understand
how mathematical objects can be described using the language of set theory.

• The natural number 0 is represented by the empty set, or equivalently ∅ or
{}.
Note that some mathematicians do not include 0 in the natural numbers;
here we will be inclusive.
• The natural number 1 is represented by the set containing 0, or equivalently
{0}, or {∅}, or {{}}.
• The natural number 2 is represented by the set containing 0 and 1, or

equivalently {0, 1} or {0, {0}}, or {∅, {∅}}, or {{}, {{}}}.
• The natural number n+1 is represented by the set containing exactly every

natural number between 0 and n.
• The ordered pair of sets (x, y) is represented by the set containing the set

containing x and the set containing x and y, or equivalently {{x}, {x, y}}.
• The function f : A → B, x 7→ f(x) is the ordered pair of A and the

ordered pair of B and the set of all ordered pairs (x, f(x)), or equivalently,
(A, (B,X)), or {{A}, {A, {{B}, {B,X}}}} where X = {(x, f(x)) : x ∈
A} = {{{x}, {x, f(x)}} : x ∈ A}.

These are typical definitions for numbers, pairs, and functions as sets. The defi-
nitions for numbers allow us to easily check for order by just checking membership,
those for ordered pairs account for order, and functions have every part of them
encoded.

From there, the integers can be defined in terms of the naturals, the rationals
in terms of the integers, infinite sequences defined in terms of functions on the
naturals, and the reals as equivalence classes of rational-valued Cauchy sequences1.

1See A.13–A.15.
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2.4. Definition (Mathematical Statements). A mathematical language consists of a
countable alphabet and a set of axiomatic validity rules. A mathematical statement
is a finite string of symbols from such an alphabet that satisfies the validity rules.

2.5. Example (First-Order Set Theory). The language of first-order set theory has
an alphabet containing the following symbols:

• ∀, the universal quantifier, read “for all,”
• ∃, the existence quantifier, read “there exists,”
• ∈, the membership operator, read “is in”
• =, the equality operator, read “is the same as,”
• ¬, the negation operator, read “it is not the case that,”
• ∨, the or operator, read “or,”
• ∧, the and operator, read “and,”
• =⇒ , the implication operator, read “implies,”
• ⇐⇒ , the if-and-only-if operator, read “is equivalent to,”
• ( and ), parentheses,

and a countable number of variable symbols, and a statement follows some common-
sense rules of validity.

In the following statement, then, u refers to the empty set, because there is
nothing in u:

∀v ¬ (v ∈ u)

Recall from 2.3 that u also refers to 0.
Basically all of modern mathematics—that is, with the exception of the mathe-

matics of mathematical language—can be expressed in first-order set theory.

2.6. Remark (Countable Infinity). Recall that in 2.4, a mathematical language was
defined to consist of a countable alphabet. What does “countable” mean? The
natural numbers are often described to have a “countable” cardinality, or size,
which would make it seem like “countable” is just jargon for an infinite quantity.
But there is a subtlety with infinity that makes this distinction important.

It is generally fallacious to think of infinity as a quantity, and generally better
to think of it as more. The set of natural numbers and the set of even numbers,
for example, both have infinite elements: if you give me any number x, I can give
you more natural numbers or even numbers than x. And while it is intuitively
obvious to find a correspondence between the evens and naturals so that every
even corresponds to two naturals, making it seem as though there were more evens
than naturals, it is not difficult to find another correspondence so that every natural
corresponds to two evens: consider n 7→ {4n, 4n+ 2}. Comparing the size of these
two sets directly is not a particularly reasonable idea considering the technicalities
of what comparing “more”s would entail, since infinity just means “more.”

That being said, there are different types of “more.” The natural numbers (and
even numbers) can be “placed” “on a line” in some order. Indeed, we call this type
of infinity countable infinity because there is some way to “count” it—if I give you
some value (not all values, but any value), by counting in that way, you will reach
this value at some point. The integers can similarly be enumerated, simply as 0, 1,
−1, 2, −2, 3, −3, . . .

There are also uncountable infinities that do not have such enumerations. We
will show the existence of these in Section 3.
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2.7. Remark (Countable Alphabet). Particularly critical readers may wonder why
an alphabet must be countable. It does not necessarily have to be, but it is more
meaningful and interesting to define it as such for the following reasons:

• The theorem this paper aims to prove is true and its proof is valid on every
sufficiently-expressive language with countable alphabet, and its proof is
invalid for any language with uncountable alphabet and the theorem itself
in fact trivially false for at least one language with uncountable alphabet;
• The purpose of a language is for a mode of expression and communication

between two or more people, and it is meaningless to have more distinct,
unique symbols in a language than is human-comprehensible, which an
uncountably-infinite alphabet certainly would be; and
• First-order set theory can be used to express basically everything in modern

mathematics, and it only uses a countable alphabet—indeed, a language
which is just as expressive but uses an uncountably-infinite alphabet would
only be characterized as redundant.

First-order set theory itself requires a countable alphabet only because it is valid to
write such statements as ∀u∀v ∀w ∀x∀y ∀z ∃a ∀b∃c (a = a), which although quite
meaningless, is still a valid statement. Since statements can be of arbitrary (but
not infinite) length, the alphabet must be able to accommodate that.

Having addressed Question 1.2, we proceed to Question 1.3.

2.8. Definition (Axiomatic Logic). A mathematical proof is a derivation of a formal
statement, or proposition, through applying “common-sense” rules assumed to be
true—axioms—to beginning assumptions, called premises.

One such axiom allows us to conclude that, for any propositions P,Q, if P ∨Q
(at least one of P and Q is true) and ¬P (P is not true), then Q (Q is true). For
example, if we know that it is raining or it is snowing, and we know that it is not
raining, we can conclude that it is snowing. A similar axiom allows us to conclude
that if ¬P (P is not true), then ¬ (P ∧Q) (P and Q are not both true). Another
axiom allows us to conclude a logical equivalence of a premise, such as those given
by De Morgan’s Laws: ¬ (P ∧Q) ⇐⇒ (¬P ∨ ¬Q) and similarly, ¬ (P ∨Q) ⇐⇒
(¬P ∧ ¬Q); or the contrapositive: (P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P ).

2.9. Remark (Mathematical Truth). This notion of axiomatic logic implies that a
mathematical proof does not “prove” that a proposition is “true;” it merely shows
that, given one’s initial assumptions and a set of derivation rules, one must reach
a certain conclusion. Although abstract mathematics provides a useful and inter-
esting tool for describing, exploring, and modelling the real world, absolute truth
is beyond its scope: the conclusions at which one arrives through mathematical
reasoning are only as strong as one’s axioms—the things one considers true by
definition.

2.10. Example (The Principle of Explosion). By assuming contradictory premises,
one can prove any statement.

• Let Q be the statement we wish to prove. Q could be, for instance “Socrates
is immortal,” “there exists positive integers x, y, z satisfying x4 + y4 = z4,”
or “all members of the empty set are blue.”
• Assume P ∧ ¬P . (A statement P and its negation ¬P are both true.)
• Then P . (Since P ∧¬P is true, both are true and in particular P is true.)
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• Then P ∨Q. (Since P is true, at least one of P and Q is true.)
• But ¬P . (P is not true for the same reason that P is true)
• Therefore, Q. (Since at least one of P and Q is true, and P is not true, Q

is true.)

Thus, the desired statement follows from our assumptions.

2.11. Remark (Properties of the Empty Set). The third statement in 2.10—“all
members of the empty set are blue”—is actually true, which is somewhat counter-
intuitive. Suppose it is false. Then there must exist a non-blue member of the
empty set. But there are no members of the empty set, and in particular no non-
blue member exists. This is logically equivalent to saying that all members of the
empty set are blue. Similarly, one can show that all members of the empty set are
green, orange, or any colour one likes; indeed, one can show that all members of
the empty set are not blue. These statements are vacuously true.

This provides an answer to Question 1.3. We are now equipped to tackle the
problem of inexpressible real numbers.

3. Limits of Formal Systems

With a formal infrastructure for formality, some brilliant and particularly insane
mathematicians took to finding its limits. Kurt Gödel published his famous two
incompleteness theorems in 1931, and following him were many others who showed
various incapabilities of formal mathematical systems. Notable results include

• Gödel’s First Incompleteness Theorem: in any sufficiently expressive system
(in particular, those whose languages that support “arity of at least two”),
there are statements that are true but cannot be proven so;
• Gödel’s Second Incompleteness Theorem: any consistent, sufficiently ex-

pressive system cannot demonstrate its own consistency ;
• Tarski’s Undefinability Theorem: arithmetic truth cannot be defined in

terms of arithmetic;
• Church’s proof that Hilbert’s Entscheidungsproblem is unsolvable—not that

it’s true, not that it’s false, not that it’s badly-defined, not that no one has
ever found a solution, but that the problem cannot be solved; and
• Turing’s proof that the Halting Problem is undecidable.

This paper aims to prove another result about the limits of formal systems: that
in a system both expressible enough and restrictive enough, that there are objects
that exist within the system but cannot be expressed. Normally, proofs of existence
are accomplished by a direct example; but we are proving that there are numbers
that cannot be expressed and thus cannot be directly given as an example. As such,
we use indirect means.

This result has been proven before, but we the authors have not found any
literature relating to its additional implications.

We aim to prove that there are real numbers that cannot be expressed in first-
order set theory, even though first-order set theory is sufficient to express basically
all of modern mathematics. In this chapter, we will build up the necessary tech to
do just that, and then explore its implications.

Extending this proof to any language that expressive enough to describe all of
basic arithmetic, algebra, and calculus (that is, so that the real numbers exist as we
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commonly know them) but restricted to a countable alphabet is left as an exercise
to the reader.

3.1. Remark. By framing this in first-order set theory, we are essentially showing a
stronger version of the claim that there are sets that exist but are inexpressible.

3.2. Definition (Expressible Numbers). Let x be a real number and L a mathe-
matical language. x is expressible in L if there is a mathematical statement F ∈ L
that describes x uniquely. That is, formally, there is F ∈ L so that if F (x) (that
is, the relation F is satisfied by x), then for all y, F (y) =⇒ x = y (that is, if
another y satisfies F then y is actually x). Conversely, a statement L expresses a
real number x if it describes it uniquely.

3.3. Example. The following examples should help the reader understand the
notion of expressibility.

• 1 is expressible by 2.3;
• In general, any natural number is expressible by 2.3;
• Any integer is expressible since (by 2.3) they are each directly defined with

respect to exactly one natural number and at most one binary choice;
• Any rational is expressible since (by 2.3) they are each directly defined with

respect to exactly two integers;
•
√

2 is expressible because we have notation for it—alternatively, we can
express it as “x such that x×x = 2 and 0 < x” since 2 and 0 are expressible;
• π is expressible as the 6 times the square root of the convergent infinite

series
∑∞
k=1

1
k2 , among other representations; and

•
∫ e2
−π(x2 + e−x

2

) dx is expressible because π, e, 2, and integrals are express-
ible; but
• “x such that x × x = 2” does not express a number because it describes

both the square root of 2 and the negative square root of 2, failing the
uniqueness requirement; and in particular,
• “x such that x ∈ R” does not express a number because it fails the unique-

ness requirement.

3.4. Lemma (Countable Union of Countable Sets). The countable union of count-
able sets is countable. That is, if s0, s1, s2, ... are countable sets, then the set S with
sn ⊆ S for all n ∈ N is countable.

Proof. We find an enumeration for S. We know that s0, s1, s2, ... have enumerations,
say σ0, σ1, σ2, .... Then we make an enumeration σ on S so that

σ = (σ0(0), σ0(1), σ1(0), σ0(2), σ1(1), σ2(0), ...),

skipping duplicates.
Intuitively, we make an infinite table of the elements in s0, s1, s2, ... and draw

diagonal lines along them, skipping duplicates. Each diagonal lines hits a finite
number of elements and these lines can be connected end-to-end, putting every
element of S on a line. Therefore S is enumerable and thus countable. �

3.5. Example (Countability of the Rationals). The rational numbers can be thought
of as the union of every set of integers divided by some nonzero integer; that is, the
union of the integers divided by 1, the integers divided by −1, the integers divided
by 2, etc.
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But the integers are countable (by 2.6) so the rationals are a countable union of
countable sets, implying that the rationals are also countable.

3.6. Corollary (Statements in First-Order Set Theory). There are countable math-
ematical statements in first-order set theory.

Proof. We consider the number of finite strings of symbols from the alphabet of
first-order set theory, and we note that every mathematical statement in first-order
set theory is also a finite string of symbols from its alphabet, so there must be at
most as many mathematical statements as finite strings of symbols in first-order
set theory.

We first show inductively that for any length n, the number of finite strings of
exactly that length is countable.

Consider the number of finite strings of length 1. This is just the alphabet of
first-order set theory, so these are countable.

Then suppose that the number of finite strings of length n is countable. Then
each finite string of length n+ 1 is exactly defined from exactly one finite string of
length n and one symbol from the alphabet. This is the same situation as in 3.5
and so by 3.4, the finite strings of length n+ 1 is countable.

(Essentially, in this induction we show the length 1’s are countable, and then
since length 1’s are countable, so are length 2’s, and length 3’s, etc.)

But the number of finite strings of symbols is the union of the sets of the strings
of symbols of length n for all n, which is the countable union of countable sets,
which by 3.4 is itself countable, and we are done. �

3.7. Theorem (Cantor). The set of real numbers is uncountable.

Proof. We show a stronger result: that the real numbers between 0 and 1 are
uncountable. (You can convince yourself that showing this immediately proves the
theorem).

Recall from 2.10 that if one supposes a contradiction, then they can prove any-
thing. We do exactly this, supposing the false and then finding something ridicu-
lous.

We suppose for a contradiction that there is an enumeration on the reals between
0 and 1, say

x1 = 0.a1a2a3a4a5a6...

x2 = 0.b1b2b3b4b5b6...

x3 = 0.c1c2c3c4c5c6...

x4 = 0.d1d2d3d4d5d6...

etc.

Then we make a new real number x between 0 and 1 from this enumeration so
that

x = 0.y1y2y3y4y5y6...

so that if a1 = 5 then y1 = 6 and y1 = 5 otherwise, and if b2 = 5 then y2 = 6 and
y2 = 5 otherwise, etc.

But x 6= x1 since the first digit doesn’t match, and x 6= x2 since the second
digit doesn’t match, and so on, so it cannot possibly appear in the enumeration.
But since all numbers between 0 and 1 must appear in the enumeration, x cannot
possibly be between 0 and 1; that is, x < 0 or 1 < x. But 0 < x < 1 by its very
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construction. Then by transitivity, x < 0 < x or x < 1 < x, and in particular,
x < x, which is clearly absurd.

But we did not make any unwarranted steps in our proof except for our suppo-
sition that there was an enumeration, so it must be the case that there is no such
enumeration, and so the reals between 0 and 1 are uncountable. �

3.8. Remark (A Notion of Order on Infinities). From the proof of 3.7, notice that
there were more reals between 0 and 1 than are countable, so the uncountable
infinity is more than the “more” of the countable infinity.

3.9. Proposition (Inexpressibility). There are real numbers that cannot be ex-
pressed in first-order set theory, even though first-order set theory is sufficient to
express the rest of modern mathematics. Formally, there exists x ∈ R so that there
does not exists a statement F in first-order set theory that expresses it.

Proof. By 3.6, there are countable mathematical statements in first-order set theory.
In particular there are fewer statements that express a number than there are
statements in general, so there are at most countable mathematical statements
that express a number in first-order set theory.

Since each such expressing statement expresses exactly one number, there are
then at most a countable number of real numbers that are expressible.

But by 3.7 there are uncountable real numbers, and by 3.8, uncountable quan-
tities are greater than countable quantities.

Then the set of inexpressible real numbers cannot possibly be empty. Thus,
there exist real numbers that cannot be expressed in first-order set theory. �

3.10. Corollary (Inexpressible Superiority). There are more inexpressible reals
than expressible reals.

Proof. We show that the inexpressibles are uncountable, and the proof follows
immediately from 3.8.

Suppose for a contradiction that the inexpressibles are countable. We know that
the reals are the union of the inexpressibles and the expressibles. By 3.9 we know
that the expressibles are countable.

Then the reals would be countable since we can take one element at a time each
from the expressibles and inexpressibles, just as the integers in 2.6 did from the
naturals and the negatives of the naturals. But by 3.7 we know that the reals are
uncountable, which is a contradiction. �

3.11. Definition (Expressible Functions). Let f : A → B be a function. f is
expressible in first-order set theory if there is a statement F in first-order set theory
that uniquely describes the set from 2.4 corresponding to f , and we say that such
F expresses f .

3.12. Lemma (Inexpressible Functions). There are inexpressible functions.

Proof. Consider the set of all constant functions R → R. Since there are inex-
pressible numbers, there are functions in this set that sends its parameter to an
inexpressible number. But since that number cannot be expressed, neither can the
set of ordered pairs with it as its second element, and so neither can the set corre-
sponding to a function that works on that set of ordered pairs, though it exists in
the set of all real-valued functions over the reals. �
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3.13. Lemma (Expressive Idempotency). Let f be an expressible function whose
domain is E. If x ∈ E is expressible, then so is f(x).

Proof. Since f and x are both expressible, f(x) can be expressed by the statement
y = f(x). �

The following is a somewhat surprising restatement of 3.13; though it is the direct
contrapositive, it does not appear nearly as obviously and gives rise to interesting
possibilities.

3.14. Corollary (Inexpressibles from Inexpressibles). Let f be an expressible func-
tion. If f(x) is inexpressible, then x is inexpressible.

Proof. Contrapositive of 3.13. �

3.15. Corollary (Bijective Preservation). Let f be a bijective expressible function.
x is expressible if and only if f(x) is expressible.

Proof. The forwards implication is immediate from 3.13. As for the backwards im-
plication, note that since f is bijective, it admits an inverse f−1, which is expressed
by flipping the entries in the set of ordered pairs.

Suppose f(x) is expressible. Then by 3.13, f−1(f(x)) = x is expressible. But
f(x) was arbitrary, so we’re done. �

3.16. Remark (Inexpressible Generation). The above theorem then allows us to
freely generate inexpressible numbers from any given inexpressible number simply
by finding expressible bijective functions that we can put it through.

3.17. Theorem (Inexpressible Density). The set of expressible real numbers is
dense in the real numbers.

Proof. We present a standard ε–N proof. The tech, notation, and terminology in
this proof are standard definitions in calculus and are explained in Appendix A.

Let β be an arbitrary real number and x be an inexpressible real number cho-
sen from 3.9. We will construct an inexpressible-real-valued sequence from x that
converges to β.

We know from the density of the rational numbers that there is a sequence
(ak)∞k=1 ∈ QN so that limk→∞ ak = β. Choose such a sequence.

Using x we construct a sequence of inexpressibles (bk)∞k=1 ∈ RN so that limk→∞ bk =
0. We do this by letting bk = x2−k, and since multiplication by an expressible num-
ber is an expressible function and multiplication by a nonzero number is a bijective
function, by 3.15 every bk is inexpressible.

Finally, let (ck)∞k=1 ∈ RN so that ck = ak + bk. Note that since addition by
an expressible number is an expressible function and addition by any number is a
bijective function, by 3.15 every ck is inexpressible.

Then let ε > 0. Since limk→∞ ak = β, there is Ma so that any m > Ma satisfies
|β − am| < ε

2 . Since limk→∞ bk = 0, there is Mb so that any m > Mb satisfies
|bm| < ε

2 .
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Let N = max(Ma,Mb). Note that if n > N , then we must also have n > Ma

and n > Mb. Then for all n > N , we have

|β − cn| = |β − an + an − cn| adding zero

≤ |β − an|+ |an − cn| by the triangle inequality

= |β − an|+ |bn|

<
ε

2
+
ε

2
= ε.

Thus limk→∞ ck = β. But (ck)∞k=0 was a sequence of inexpressible numbers, and
β was an arbitrary real number, so every real number is a limit of some sequence of
inexpressible numbers, and so the set of inexpressible numbers is dense in the real
numbers. �

4. Applications of Expressibility Theory

Recall that an inexpressible number can never be expressed by a mathematical
statement. That means that it is impossible to work with these numbers directly.
There is no application of inexpressible numbers—they never show up unless we
look for them because no other line of derivation allows us to arrive at them.

There are no applications of this work.
And that is beautiful, because that makes this the purest math there is.
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Appendix A. Calculus

This appendix explains the terminology and develops the technology used in
Theorem 2.17.

A.1. Definition (Absolute Value). Let x ∈ R. The absolute value of x is

|x| =
{
−x x < 0
x x ≥ 0

A.2. Remark. Let x, y ∈ R. You can think of |x− y| as the distance between x and
y. In particular, for y = 0, |x− y| = |x− 0| = |x| is the distance between x and 0.

An equivalent definition of absolute value is |x| :=
√
x2, which you can verify

yourself as an exercise.

A.3. Theorem (Triangle Inequality). Let a, b, c ∈ R. Then |a−c| ≤ |a−b|+ |b−c|.



ON THE EXPRESSIBILITY OF REAL NUMBERS 11

Proof. Without loss of generality, say a ≤ b and a ≤ c so b− a ≥ 0 and c− a ≥ 0.
There are two cases to consider:

Case 1 (b ≤ c so c− b ≥ 0). Case 2 (b > c so b− c > 0).

|a− c| = c− a |a− c| = c− a
= c+ 0− a = c− b+ b− a
= c− b+ b− a > b− c+ b− a
= |c− b|+ |b− a| = |b− c|+ |b− a|
= |a− b|+ |b− c| = |a− b|+ |b− c|

=⇒ |a− c| ≤ |a− b|+ |b− c|. =⇒ |a− c| ≤ |a− b|+ |b− c| �

A.4. Remark. It may be more intuitive to call the triangle inequality the detour
theorem: the direct path from A to B is never longer than a path from A to C to
B.

A.5. Notation (Functions). Let A, B be sets. The set of all functions f : A→ B is
denoted BA.

A.6. Definition (Sequences). Let A be a set. A sequence (Sn)∞n=0 in S, or S-valued
sequence, is a function S : N→ A, for which we use the following special notation
and terminology:

• The n-th term of S is S(n), commonly denoted Sn, and we write
• (Sn)∞n=0 = (S0, S1, S2, ...).

A.7. Definition (Convergence). Let (Sn)∞n=0 ∈ RN be a real-valued sequence. S
converges if there is some β ∈ R so that for all 0 < ε ∈ R there is N ∈ N so that
for all N < n ∈ N, |β − Sn| < ε.

If a real-valued sequence (Sn)∞n=0 ∈ RN converges to β ∈ R, then we write
limn→∞ Sn = β and we say the limit of (Sn)∞n=0 as n goes to infinity is β.

A.8. Example. Consider the following sequences:

• (An)∞n=0 = (0)
∞
n=0 = (0, 0, 0, 0, ...),

• (Bn)∞n=0 =
(

1
n+1

)∞
n=0

= (1, 12 ,
1
3 ,

1
4 , ...),

• (Cn)∞n=0 = ((−2)−n)
∞
n=0 = (1,− 1

2 ,
1
4 ,−

1
8 , ...), and

• (Dn)∞n=0 =
(

sinn
ln(n+2)

)∞
n=0

.
= (0, 0.766, 0.656, 0.088,−0.422,−0.493,−0.134, 0.299, ...).

These sequences all “approach” 0 as n becomes very large. Indeed, these sequences
all converge to 0.

Consider the following sequences:

• (En)∞n=0 = (n)
∞
n=0 = (0, 1, 2, 3, ...),

• (Fn)∞n=0 = (1)
∞
n=0 = (1, 1, 1, 1, ...),

• (Gn)∞n=0 = ((−1)n)
∞
n=0 = (1,−1, 1,−1, ...),

• (Hn)∞n=0 = (sinn)
∞
n=0

.
= (0, 0.841, 0.909, 0.141, ...), and

• (In)∞n=0 = (max {n(−1)n, 0})∞n=0 = (0, 1, 0, 3, 0, 5, ...).

Here, only sequence F converges at all, but not to 0. E never stays around any-
where, G never gets close to 0 though it bounces around, and H and I get close to
0 but does not stay close.
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From this, we can come up with the following criterion for convergence: a se-
quence (Sn)∞n=0 converges to β if it can get as close as you want to β and then will
stay that close to it forever. Readers can convince themselves that this is exactly
what Definition A.7 accomplishes.

Readers can also verify thatNA ≥ 0, NB ≥ 1
ε−1, NC ≥ − log2 ε, andND ≥ en−2

satisfy Definition A.7. This method of finding an N -value for any ε > 0 is commonly
called an ε–N proof.

A.9. Definition (Density). Let A ⊆ B be sets. A is dense on B if for every β ∈ B
there is an A-valued sequence (Sn)∞n=0 ∈ AN that converges to β.

A.10. Theorem. Let S ⊆ R. The following are equivalent:

(1) S is dense on R.
(2) For every x < y ∈ R there is s ∈ S so that x < s < y.

Proof. (1) =⇒ (2). Let x < y ∈ R. There is a sequence (Rn)∞n=0 ∈ SN that
converges to x+y

2 and an N so that

n > N =⇒
∣∣∣∣x+ y

2
−Rn

∣∣∣∣ < y − x
2

so choose r = Rn for some n > N . Then x = x+y
2 −

y−x
2 < r < x+y

2 + y−x
2 = y.

(2) =⇒ (1). Let β ∈ R. Let (an)∞n=0 = (β)
∞
n=0 ∈ RN and (bn)∞n=0 =

(β + 2−n)
∞
n=0 ∈ RN. Then by hypothesis for every n there is cn ∈ S with an <

cn < bn.
Let ε > 0, choose N > − log2 ε, and let n > N . Then

|β − cn| = |an − cn|
< |an − bn|
=
∣∣2−n∣∣

= 2−n

< 2−N

< 2log2 ε

= ε �

A.11. Remark. Let S be a set dense in R. Then S is everywhere.

A.12. Example. The following sets are dense in R:

• the rationals Q,
• the irrationals Q̄, and
• the dyadics

{
x
2y : x ∈ Z, y ∈ N

}
A.13. Definition (Cauchy Sequences). Let (Sn)∞n=0 ∈ RN be a real-valued se-
quence. S is a Cauchy sequence if for all 0 < ε ∈ R there is N ∈ N so that for all
N < m,n ∈ N, |Sn − Sm| < ε.

A.14. Theorem. Let (Sn)∞n=0 ∈ RN be a real-valued sequence, and suppose that
(Sn)∞n=0 converges to L ∈ R. Then S is a Cauchy sequence.
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Proof. Let ε > 0 be an arbitrary positive real number. By the definition of conver-
gence, we can choose some N ∈ N so that if n > N , then |Sn − L| < ε

2 . Thus, if
m,n > N , then

|Sm − Sn| ≤ |Sm − L|+ |Sn − L| <
ε

2
+
ε

2
= ε,

where the first inequality follows from A.3. But this means precisely that (Sn)∞n=0

is a Cauchy sequence. �

A.15. Remark. A sequence is Cauchy if the terms get arbitrarily close together and
stay close together forever. In A.14, we showed that every convergent sequence
is Cauchy. In fact, the reverse implication is also true: every Cauchy sequence is
convergent. The proof of this fact is beyond the scope of this paper.

Cauchy sequences are useful because they give us a criterion for determining
whether or not a sequence converges without referring to its limit. This allows us
to define real numbers as limits of Cauchy sequences of rational numbers without
our definitions being circular.


